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The Consensus Times of the Majority Vote
Process on a Torus
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We study the majority vote process on a two-dimensional torus in which every
voter adopts the minority of opinion with small probability J. We identify the
exponent that the mean of consensus time is asymptoticaily (1/5) with that
exponent as § goes to 0. The proof is by a formula for mean exit time and by
the metastable theory of Markov chains developed in the study of the stochastic
Ising model.
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1. INTRODUCTION

The majority vote process is a spin system usually defined on an infinite
lattice (ref. 10, p. 33). We now consider it on a two-dimensional torus
T=1{1,2,3,., N} x{1,2,3,., N}. A voter can have either of two opinions
0 or 1, and updates its opinion at exponential times with parameter 1. At
an exponential time, the voter adopts the opinion of the majority of its four
neighbors and itself with probability 1 — & and the opinion of the minority
with probability J.

Points of T are denoted by x, y, and occasionally by two coordinates,
e.g, (1,2). Let 5#(x) be the opinion of the voter at x. Then n(x) takes 0
or 1 only. The collection #={n(x); xeT} is called a configuration.
§={0,1}" is the set of all configurations. Let x+e,, x+e,, x+e; and
X+ e, be the adjacent sites of x. If T°_, |n(x) — n(x +e,)| <2, the voter at
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x is in agreement with the majority of its neighbors and itself. #* is the
configuration that differs from 5 only at site x, ie.,

,\.(v)_{n(y) if y#x
g T —n(x) if y=x

Infinitesimal rates are given as follows:

1-0  if &=n% X!_ In(x)—n(x+e)[=3
q(n, &) =<0 if &=p%, Xi In(x)—n(x+e)<2 (L1)
0 if &#pY, VxeT

The corresponding Markov chain {&,} on S is called the majority vote
process on a torus. Here 0 <J < 1. To emphasize the dependence of 6 we
sometimes put & as the superscript, e.g., ¢°(#, &).

The majority vote process {&,} is recurrent, since S is finite. Let 0 (1,
respectively) be the configuration that all voters hold opinion 0 (1, respec-
tively) and

o(0)=inf{r > 0; &, =0}, o(1)=inf{t>0; ¢, =1}
T,=0a(0) A (1), T,=0(0) v o(1)

(1.2)

Here a A b means the minimum of a and b, a v b the maximum of ¢ and
b. The time T, is the time when all voters reach an agreement in opinion
for the first time, and is therefore called a consensus time. T, is the time
that all voters adopt the same opinion 1 after they all adopted opinion 0
simultaneously, or vice versa. If J is small, it would take a very long time
for a voters to take the opinion of the minority. We have the following
asymptotic estimates on ET, and ET,.

Theorem 1. The state space S is partitioned into three disjoint sets
Sy, Sy and §,. If the initial state £€ S, k=0, 1, or 2, then lim;_ , 6*E. T,
exists and is a rational number.

The sets Sg, S,, and S, will be determined in Section 3 after more
preparations. It follows from Theorem 1 that

log T,
—logd

lim P=<

50

’<s>=1 véeS,, Ve>0

However, as we shall see later, for initial state £eS,, (log T',)/(—log )
converges in distribution to a.d,+ (1 —a.)d,, where d, and J, are the
probability measures concentrating on 0 and 1 respectively, and «. € [0, 1)
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is a number depending on ¢£. By the end of this paper we will determine the
¢ for which a,=0, ie,

log T
lim P:( 08 <s>=1
s—0 “\|—logd

By the same argument we will also give the range of £ € S, such that

log T
fim P5<L—-2 <s>=1 (13)
J—-0 i —10g5

Theorem 2. For any initial state, ¥ET, converges to a rational
number as d — 0; furthermore, T,/ET, converges in law to a random
variable having the exponential distribution with mean 1.

Corollary 3. For any initial state and for any £ >0,

lim P<
d—0

Remark. 1t is interesting to note that in dimension one

log 7,
—logd

-N|<e)=1

im log ET,
s—o —logd

. logET,
<L == 1.4
!l_r.r}) —logéd (14)

Namely, the volume N does not come into play.

Similar results have been established for the stochastic Ising
model.'* % 1112147160 The inverse temperature f of the stochastic Ising
model plays the same role as ¢ here. The motivation was to understand the
so-called metastable behavior observed in physical experiments. There are
hundreds of papers on metastable behavior in both the mathematical and
physical literature (for example, refs. 2, 9, and 13).

The results reported in this paper are inspired by works on the
stochastic Ising model. We have chosen a very simple model. The method
can be extended to dealing with higher dimensions, larger neighborhoods,
or the case that infinitesimal rates are biased in 0 and 1. Similar assertions
hold with different constants, but require substantial analysis. In ref. 6, con-
sensus times of a voter model on the torus in Z“ are studied as N — oo.

It is worth comparing the majority vote process with the stochastic
Ising model. The stochastic Ising model is reversible with respect to the
Gibbs measure, while the majority vote process is not. The reversibility is
crucial to the analysis of attractors of the stochastic Ising model.** >’ It is
the Hamiltonian that gives all the information we need to compute ET),
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and ET,. On the other hand, the majority vote process enjoys a simple
feature. It is shown in refs. 3 and 14 that there is a hierarchic structure
among the attractors. There are only four levels of attractors, and a charac-
teristic quantity called C(¢, 5) is either 0,1, or co. This makes the analysis
manageable. In the study of the stochastic Ising model a configuration
called the critical droplet plays a crucial role. With probability very close
to 1 the evolution from all spins up to all spins down goes through a
critical droplet. The Hamiltonian of the critical droplet is the max-min if
all configurations are classified according to the number of +1 spins. The
critical droplet is unique in some sense. So an important object in the study
of the stochastic Ising model is to identify the critical droplet. There is no
counterpart in the majority vote process. However, there are many level 2
attractors and they somewhat share the role of the critical droplet.

This paper is self-contained, although Theorems 1 and 2 were first
derived by applying the results of ref. 3. We redefine attractors in Section
3 and use implicitly the idea of ref. 3. Our approach does not increase
redundancy, because there are only four levels in the hierarchic structure of
attractors. It is for completeness that we include the proof of the second
part of Theorem 2. The original proof can be found in ref. 3. In Section 2
we first recall the matrix tree theorem. Applying this theorem, we convert
the proof of Theorems 1 and 2 to finding a good map from a subset of S
into S. The desired estimate on the exponents is obtained through a careful
(and somewhat tedious) study in eight lemmas. Our approach is quite
simple if the detailed proof of the lemmas is skipped.

2. PRELIMINARIES
Suppose that S={¢, ..., } is finite and K is a proper subset of S.

Definition 4. G(K) is the set of maps g: K— S with the property
that g maps no nonempty subset of K into itself. We say that g e G(K) leads
¢e K to ne S\K if there is a sequence {{,,.... ,} of distinct elements in K
such that

g&)y=<¢, gl)=n and  g()=( ., I<jsn—1 (21)

Let G (K) ={ge G(K); g leads ¢ to n}.

Let {X,} be a continuous-time Markov chain on S, ¢(¢, #) the
infinitesimal rate from ¢& to #. Let n(g) =11, x 9(&, g(&)) for ge G(K). The
first exit time of Markov chain {X,} is

(K)=inf{t>0; X, ¢ K}
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Lemma 5. Suppose that K is a proper subset of S, £ K, and # ¢ K.
Suppose that 3.5 ¢x;q(¢ &)= —q((,{) and 0< —q({,{) <oo for any

(e K. Then
deG;,,(K) n(g)
2eear T(g)
Yeeaunien M8 T Xrckine Leeauriicy) H8)
deG(K) n(g)

P(Xr(K)=’7|X0=é)=

E.1(K)= (2.2)

This lemma is called the matrix tree theorem in ref. 7. It was known
40 years ago.'" For the proof, see ref. 8, Lemmas 3.3 and 3.4 of Chapter 6.
For discrete-time Markov chains it is also derived by an elementary
method of determinant in ref. 3.

Applying this lemma to the majority vote process, we find that every
n(g) is 0 or of form ¢“(1—0)” with very large integers @ and b. Then
E:1(K) is the ratio of two huge polynomials of § by (2.2). To estimate
E+(K) asymptotically as 6 — 0, we need to know the difference of the mini-
mum exponents of 0 in the two polynomials. Consider the family of
infinitesimal rates {g°(&, ); € [0, 1]} indexed by 4. Introduce

lim;_ [ —logq’(& n)]/(—logd)  if ¢%& n)=0

0 if ¢%¢&,7)>0 (23)

C(&, n) ={

with the convention that log 0 = —c0. In addition, let C(¢, £) =0 for any
£e S. For subset K< §, define

W(K)= min Y C((, g({)) (2.4)
J.’EG(I\’);EK
We(K)= min 3 C(C g(()) (2.5)

g€ G K) leK

They are the minimum exponents of the related polynomials of d. It follows
from Lemma 5 that, assuming that £ e K and 5 ¢ K,

lim —log Pg(Xr(K)‘:ﬂ): _
50 —logd

W(K) + W, (K) (2.6)

lim %: WK) = W(K\{€}) A min W (R\{L}) - (27)



784 Chen

3. ANALYSIS ON ATTRACTORS

According to (2.3), for the majority vote process,

o i T, [Ex)—n(x)] =2
C(&n)=<0 if =830 |&x+e)—&x) 23 (3.1)
1 if ??=€"!Z§=1If(x+€;}—f§(x)|<2

Definition 6. Configuration { is called an attractor if

4
Y [ix+e)~Lx)| <2 forall xeT

i=1

We say attractor { is of level 1 if max _,. 37_, |0(x+e;) —{(x)]=2.
Let A be the set of all level 1 attractors.
We say attractor { is of level 2 if max .+ 3 i_, [{(x+e;)—{(x) =1

Remark. The definition of level is altered from that of refs. 3 and 14.
Notice that 0 and 1 are the only attractors that satisfy

.
max ¥ [{(x+e)—{(x)] =0

i=1

It is often helpful to visualize ¢ by identifying & with the subset {xeT;
&(x)=1}. For example, if ¢ is a level 2 attractor, {xeT; &x) =1} consists

Fig. I. Some attractors of level 1 (upper) and level 2 {lower). {xeT;y(x) =1} is the shaded
area.
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of several columns or rows. Some typical subsets of T corresponding to
attractors are shown in Fig. 1.

Definition 7. For attractor {, define B'(C)={:7€S|there 15 a
sequence Ko, f1,.., /1, such that no=n, y,=¢ and C(y,, 5;,,)=0 for
i=0,1,.,n—1}

Lemma 8.

(i) If ¢ and # are attractors and if { ##, then n¢ B'({).

(i) If ¢ is an attractor, then there is a map ge G(B'({)\{{}) such
that g leads every £ e BY({)\{{} to { in the sense of (2.1) and

Y. C& e(&)=0=mWBO\L})

se BHON )
(i) WI(B'({))=11if { is a level 1 attractor.

Proof. (i) If ne B'({), then there exists a sequence leading # to {. In
particular, there exists #, =#" for some x € T such that C(#, #*) =0. On the
other hand, # is an attractor if and only if C(#, #*)=1 for all xeT. This
contradiction shows that n ¢ B'({). :

(i) We first define g(¢)=¢ if C(&,¢{)=0. Then D= {¢&; C(&, () =0,
&#(} is a subset of B'({)\{{}. Next we extend D step by step. If &’ ¢ D and
if there exists £ e D such that C(&', £} =0, define g(&') = ¢&. By definition of
B'({) there is always such a pair (¢ and ¢') unless D= B'({)\{({} already.
On the other hand, since B'({) is finite, the extension of D to B'({\{(}
can be completed in finite steps. Map g leads every £ e B'({)\{{} to { and
Yeesongey C(E, 8(¢))=0. Now, W(B'({)\{{})=0 by (2.4) and is mini-
mized by g.

(iii) If { is a level 1 attractor, by definition there is x e T such that
Y4, |8x+e;)—{(x)|=2. Notice that {*¢ B'({). Define g'({)=¢", and
g'(&) = g(&) defined in part (ii) if e B'(O\{¢}. Then g'e G(B'({)) and
YeeninnClE g(&))=1. On the other hand, for any fe G(B({)),
Yeenan CE f1E)) = CK, f1))=1. Hence W(B'({))>1 and is minimized
byg. 1

Remarks. (1) This is a rather simple fact, but it is a basic ingredient
of the subsequent arguments.

(2) The proof of (ii) and (iii) consists of two parts: to find a lower
bound and to find a good map that reaches the lower bound. It is delicate
to make sure that g maps no subset of K into itself. This is guaranteed, e.g.,
in part (ii) by the fact that g leads every & to { (see Fig. 2).
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Fig. 2. Maps g constructed in the proof of Lemma 8, part (ii).

(3) It is clear from the proof that the statement is still valid if B'({)
or BY(O\{{} is replaced by a reasonable subset, e.g., B'({)\B'().

(4) In most cases there are several x’s such that >?_, |{(x+e,)—
{(x)] = 2. This enables us to choose x with additional properties, e.g., {(x)=1.

(5) 1In general, B'(5) nB'({)+# . For example, if N is even, con-
figurations #' and " are in every B'(-), where

{xeT;n'(x)=1} ={(m,n) €T, m+n=even}
{xeT;n"(x)=1} ={(m,n)eT; m +n=odd}

Definition 9. (i) For attractors » and {, we say 5 %C if there is

n—1

a sequence 1y, #,,..., 1, such that no=x, n,=_ and X7, &y, 5,,.,)=1.

(1) For attractors # and {, we say » A, { if there is a sequence of
attractors (o, (.., , such that (y=#, {,=¢ and ¢, =%¢,,, for
i=0,1,.,n—1.

(it1) For {=0,1 or a level 2 attractor, define
={J {B'(n)|# is an attractor and n -5 ¢}

Lemma 10. (i) B*({) contains only one level 2 attractor, namely ¢ itself.

(i) If { is 0,1, or a level 2 attractor, then there is a map ge
G(B*({)\{(}) such that g leads every ¢ e BX({)\{{} to { and

Y Q& gld)= Y Leea=WBONL)
ce BAONES e BN

where A is the set of all level 1 attractors. 3. . gxcpcy 1jceay iS the number
of level 1 attractors in BH{\{{}. :

(i) W(BXL))=2+sem ] (ceay if { is a level 2 attractor.
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Proof. (i) Suppose that { is a level 2 attractor and that {»,, 7,,..., 1,,}
is a sequence of distinct elements such that {=#, and #, is another
attractor. Then C(n,, n,)= o0 or #, ={". In the latter case,

4 4
Y lx+e) =L)<= In(x+e)—n(x)=3

i=1 i=1

So 5, is not an attractor and »n = 2. Either ((#,, #,) = c0 or we can assume
that #,=#{, x # y. We have

4

4
Y KWy+e)=CmI<l=Y In(y+e)—n(y)<2

i=1 i=1

So C(n,,n,)=1. Consequently Z’i,=_()l Cni1iv1) =2 Clygo, my) + Clnyy m5)

> 2. Hence there is no attractor # such that { 4. n. In other words, { is
not contained in any B*(y) if 5 #¢.

(i) The proof is very similar to that of Lemma 8. For any

feG(BA O\,
Z C(faf(é))? Z C(éSf(é))l{.,‘eA)= Z l{ieA}

e BAONLY Ee BAONCY Ee BAON{C)

The last equality holds because C(&, £¥)=1 for any x if £ is an attractor.
Since [ is arbitrary, W(B*{)\{{})> number of level | attractors in
BH O\

We now construct a map g € G(B*({)\{{}) with the desired properties.
First take D =B'({)\{{} and g| pic)\cy by part (ii) of Lemma 8. Then g
leads every £e D to { and

Y CEeE)=Y lien (32)

eD e

Suppose now that z = {. By definition, there is a sequence {ig, 77, ,,}
such that ny=#,7,={ and ¥'-) C(n,, n;,,)=1. Let I=min{i; #, € B'({)}.
We extend D to {5, 11, 1,_1} B (O\{{} by defining g(n,)=#,,,,
i=0,1,2,.,/—1 Then extend D to B'(n)uB'({)\{{} as we did in the

proof of part (ii) of Lemma 8. After extension, (3.2) holds with D=

B'(n)u B"(O\{{}. Next, choose another attractor ¢ such that ¢ 4, ¢ or

S n and repeat the procedure again. After a finite number of extensions

we get a map g defined on the entire B*(¢{)\{{} with the desired properties.
(iii) It is easy to prove that W(B*({)) 22+ Y. )l cca;. We now
construct a map g € G(B*({)) that reaches the minimum. By the symmetry
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between the two coordinates we may assume that there exists & such that either
k) =1

UL k+1)=0(LEk+2)=C0(Lk+3))=0 forall 1</<N

or
(L kN =C0((Lk+3))=1
U(LEk+1)=0(Lk+2))=0 forall 1<I<N

In the first case, let {(={ and {,=(}" |, where x,=(/, k+1) for

I=1,2,.,N. Then {, is a level 2 attractor; hence {, ¢ B*({) by part (i). {,

is a level 1 attractor for /=2, 3,.., N—2; {, and {,_, are not attractors.
Clln_1,{n)=0and C({,,{,,,)=1for [=0,1,2,3,., N—2. We have

N1
Y (L) =L gen) =(N—1)—(N—3)=2
/=0

In the second case, let xo,_ =, k+ 1), x;;=(,, k+2)fori=1,2,.., N,
and {,={,(,=(" | for n=1,2,.,2N. Then {,y ¢ BX{); {y is a level 1
attractorif /=1, 2, 3,..., N—2,and {,5_- and {,_, are not attractors for /=1,
2,3,..NC¢,. ¢, )=1ifand onlyif n=0, 1, 2, 4, 6,.., 2N — 4. We have

2N -1

Z (C(CnaCu+l)_1{;,,EA})=N—(N_2)=2

n=0

In either case, define g({,)=¢{, ., n=0, 1, 2,..., and extend the domain
of definition to the whole B*({), as we did in the proof of Lemma 8, so that
Zeenup (C(E, 8(8)) — 1. 4y) =2 The desired conclusion now follows. |

4. LEMMAS FOR THEOREM 1
Let K, =S\{0, 1},
S,=U{B*(n)|nis a level 2 attractor}
S, =U{B'(n)|nisalevel 1 attractor}\S,
So=S\(S, uUS,)
Notice that S, S, and S, are mutually disjoint. This section is devoted to
the proof of the following statement.
Lemma 11. We have
0 if £es§,
W(K,) — WK \{&}) A rrgll}{lI W AK\{{}) =41 if &eS§,
) 2 if ¢eS,
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Lemma 12. W(K,)=number of level 1 attractors in K, +2 x num-
ber of level 2 attractors in K.

Proof. As observed in the proof of Lemma 10, if { is a level 2 attrac-
tor, {¥ is not an attractor and C(¢{, {¥)+ C({Y, ({¥)*)=2 for any x, yeT,
x# y. Suppose that { and » are level 2 attractors, ge G(K,), g({)={",
g(n)=n" for some x, yeT; then g({)+# g(n). Otherwise {{, (% n} is a
sequence leading { to #, and C({%, n)=C(#*, n)=0. This implies that

{ N n, contradicting the fact that { is a level 2 attractor. Therefore for any
g € G(KI )’

Y CLegn= Y e
ek $is a level

+ ) [GE g0+ Clgld), glgON]

¢ is a level
2 atlractor

= number of level 1 attractors

+ 2 x number of level 2 attactors

and W(K,) shares the same lower bound.

For every level 2 attractor we constructed in the proof of part (iii) of
Lemma 10 a sequence {(;;i=0,1,2,3,.} leading the level 2 attractor
{ ={, to another level 2 attractor or 1. Let D be the union of these sequen-
ces. Define g({,)={;,, for {; e D. Then g maps no subset of D into itself
because {xeT; {;(x)=1} is increasing in i. Furthermore

Y &) =)= L TACE )= igen)

ZeD Cisalevel [
2 altractor

Y 2=2xnumber of level 2 attactors  (4.1)

I

Cisa level
2 attractor

Extend D to K, and keep (4.1), as we did in the proof of Lemma 8. Then
geG(K,) and Y .. C(L, g({)) reaches the lower bound. This proves the
lemma. ||

Lemma-13. We have

W(K,)—2 if (isalevel 2 attractor
W(K,)—1 if (isalevel 1 attractor or if {*is

a level 2 attractor for some xe T
W(K,) otherwise

WKN\{{}) =



790 Chen

Furthermore, W (K \{C})=W(K,\{{}) if { is a level 2 attractor and
Ee BX (), orif ¢ i 1s a level 1 attractor and & e B'({).

The proof is identical with that of Lemmas 10 and 12, so we skip the
details.

Proof of Lemma 11. If £€S,, there is a level 2 attractor { such that
Ee B*({). By Lemma 13,

WK\ = WENC) = WK,
K\{n} )= WK \{n})=2WK,)-2 forany nek,

s.l/

So
W(K,)— W(K|\{f}) A Zr;ll?. W.:;(Kl\{z:})

=[WK,)— W(Kl\{é} )] v {T;x[ W(K,)— ng(Kl\{C})] =

If ¢=S,, there is a level 1 attractor { such that ¢ e B'({). By Lemma
13, W(K,)-W _(K,\{{})=1; and for any ye K, other than a level 2
attractor

W (K \{n})= WK \{n}) = W(K,)— (4.2)
If (4.2) also holds for all level 2 attractors, then

W(K,) ~ WIK\{¢} A ?:I;? W (K\{L})
=[WK) - WK\{HT v {ggf[W(K;)— W (K N\{{})]=1

Suppose now that (' is a level 2 attractor and ge G- (K ,\{{'}). Let
{&€p, &1,y €,} be the sequence leading ¢=¢, to {'=¢,. Namely,
Ero1=8(E0), k= O 1, 2,.., n— 1. Suppose that &, is the first attractor in the

sequence. If 3/ C(é,,f,+,)—0 and X720 C(&i &) =202 g eays it
would follow that &e B'(&)) = B({'), contradicting the fact that & ¢ S,. Thus

n—1 n—1
YCELE)ZI+ Y on
i=0 i=0

and

n—1

Y. Clngm)= Z C&L&in )+ Y Clu, gn)

ne KIN{{'} n#EE

/1+W(K|\{C})=W(K1)—
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Therefore We.(K,\{{'}) = W(K,) — 1. This verifies (4.2) and completes the
analysis of the case that £€S,.
We skip the similar proof of the case that £eS;. ||

5. LEMMAS FOR THEOREM 2

Lemma 14. Let K,=S\{1} =K, U {0}. Then

W(K,)— W(Kz\{o}) A min Wo,,(Kz\{ﬂ})=N

ne Kk

The proof is very long, and is divided into three parts. First, consider
a sequence {x,,i=1,2,.,2N} consisting of

(1, 1), (1,2),(1, 3),.. (1, N), (2, 1), (2, 2), (2, 3),.., (2, N) (5.1)

(with possibly different order). Then {{,=0, {;={} |, i=1,2,.,2N} is a
sequence leading 0 to the level 2 attractor {,y (Fig. 3a). {,,, is a level 1
attractor (Fig. 3b) if

k
{xeT; 0(x)=1} = U {(1,4),(2,a),... (1, b)), (2, b))}

j=1

k
Y (b,—a;+ 1) =m; bi—a;21, a;,,—b;23 V) (5.2)
i=1

Lemma 15. We have

2N~ 1

2 Q&) =1 ea)) 2N

i=0
In general, if {,,, is of form (5.2), then

2m—1

Y (Cn G —Ligenr) Zm+k (5.3)

j=0

Proof. 1If {,, is the first level 1 attractor in the sequence, then

ot Lieay=0and C({;_,,{;)=1if x; is the first of (1, 5) and (2, s) in

the sequence or x;=(1, a;), (2, a;), (1, b;), or (2, b;) for some j. So (5.3) is
true.

We now apply induction. Suppose (5.3) is true for attractor ¢,,,, and

{5, is the next level 1 attractor in the sequence and is of the form (5.2).
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@ o

b 3,

Fig. 3. (a) {5 and (b} (s, of form (5.2) {xe T: {;(x)=1} is the shaded area.

Any sequence {{5,, (o s 12 Canr} leading ¢, to {5, is virtually one of the
following three cases (Fig. 4):

(1)
{xeT; (o, (x) =1} ={(1,1),(2,1),(1,2),(2, 2),..., (1, m), (2, m)}
{xeT;(,(x)=1} ={(1,1),(2,1),(1,2), (2, 2),..., (1, '), (2, m')}

Assume that {;={;" . Then C({;_,, {=1if x;=(1,m"), (2, m'), and first
of (1,s) and (2, 5) in the sequence for m+ 1 <s<m' — 1. Note again that
{; is not an attractor for 2m < j <2m’, but {,,, is. Hence

2 — 1 2 —1

Y Clnliv)zm —m+1, Y ligea =1

F=2m i=2m

By the induction hypothesis, (5.3) holds with k= 1. We have
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(ase )

Case if)

Case iij)

Fig. 4. Three basic cases of (-, (left) and {5, (right).

m

2m' —1

Z (C;s cj—(-l)__l:l:je"\;)

JF=2m
2m—1 2m' — |
Z + > zZm+)+(m —m+1-1)=m'+1

J=2m

(1) Assume that (,,, is the same as case (i) and (5.3) holds with
k=1, and that

{xeT; {5, (x)=1}
={(1,1),(2,1),(1,2),(2,2),.. (1, m), (2, m)}

vi(La+1l+m),(2,a+14+m)..,.(la+m), (2, a+m')}
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Then C(;_,{)=1 if x;=(L,m+a+1), 2,m+a+1), (1,m +a),
(2, m' +a), as well as the first (1,s5) and (2,s) in the sequence for
mia+2<s<a+m —1. We have

2m' — |

L (GGG~ Lea)2m —m+2~1
i=2m

2w’ -\ 2 -1 2 — 1

Y =Y + Y 2m+)+(m—m+1)=m+2

j=0 J=0 Jj=2m

{ii1) Suppose that {,,, is the same case (i),
{'YET; sz(,\')z 1}
={(1,1),(2, 1),(1,2),(2,2),...(1,a), (2, a)}
vilLa+l4+4m —m), (2, a+1+m ~m),.., (1, m'), (2, m")}
and (5.3) holds with k =2. Then C({; _,,{;) =1 if x; is the first of (1, s} and
(2, s) in the sequence for ¢ + 1 <s<a + (m —m). We have

2m' =1

Y (G, ) — Ligea)zm —m—1
F=2m

2m' —1 2m—1 2m'— |

Y=Y + Y zm42+(m—m-1)=m'+1

i=0 i=0 i=2m

We have shown that (5.3) holds for all {,,, of form (5.2). Suppose now
that {, is the first configuration (see Fig. 5) in the sequence such that

(xeT; {(x)=1} > {(1,1),(1,2),... (1, N)}
ot {(2,1),(2,2)... (2, N)}

Suppose that {,,, is the last level 1 attractor of form (5.2) before ¢, in the
sequence. (In the extreme case {,,,=0.) Then {; is not an attractor for

Fig. 5. The first configuration ¢, in the sequence {xeT: {;(x)=1} 2 {{1, 1}, (1. 2),.... (1, N)}
or {2, 1% (2. 2)..., (2, M},
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2m < j<I Note that C({;_,,{;)=1if x; is the first of (1, s) and (2, 5) in
the sequence and {,,.((1, s})=0. There are N —m such s’s. Hence,

/-1

2 (g, Gr)—ligea) ZN—m—1

i=2m
AN — | 2 — 1 i—1
Y =23 + Y 2m+1+N—-m—1=N |

i=0 j=0 J=2m

Lemma 16. If the sequence {7,,7,,...#,} leads 0 to the level 2
attractor 5,,, then

n—1

Z (Clnjanie)—1 {.,,e,\}) =N

j=0

Furthermore, W(K,) > W(K,)+ N and W(BZ(O))>N+Z¢E,3:“,, Licear

Proof. Assume that 7,=0, ;=77 |, j=1,2,.,n and 5, 1s a level 2
attractor. Note that the same y may appear two or more times in the
sequence {y;, j=1,2,.., n}. Let us call the subset {(k, 1), (k,2)..., (k, N)}
a column of T and the subset {(1, k), (2, k),.., (N, k)} a row of T. Because
of the symmetry between column and row, we shall only treat columns.
Note also that { yeT; 5,(y) =1} contains at least two points in every row,
and n>2N. Write y; as (y,(1), y,(2)). Define a map ¢: {y,, 1 <j<n} —
Tu {w} as follows:

[ (1,5) if  y,is the first point of row s in the sequence
and y;(1)isodd, v,(2)=s

or if y,is the second point of row s in the sequence,
y;(2)=s, y, the first point of row s in the
sequence, y,(1)iseven, and y,# y;

y,)= < (2, 5) if  y,is the first of row s in the sequence,

y;(2)=s,and y,(1) is even

or if y;is the second point of row s in the sequence,
y(2)=s, y, the first point of row s in the
sequence, and y{1)is odd, and y,;# y;

\, © otherwise

Map ¢ translates every y; horizontally to the first two columns or the
cemetery (oo ), with little attention to the parity of the first coordinate of y;.
The fact that { yeT; 5,(y) =1} contains at least two points in every row
guarantees that the subsequent ¢(y, ), after deleting all co’s, is a sequence

§22/86/34-22
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of (5.1). Rewrite ¢(y;;) as x;,i=1,2,.,2N and let {,=0,{;={}" . Since
y;’s are more spread and x,’s are more concentrated, Xx; is likely to have
more neighbors than the corresponding y,;,, and {; is more likely to be a

level 1 attractor than the corresponding 7, ;, is. That is,

G Liv DL Cnjys Njiy+1) - and Lieear 21y, ea

We have

n—1 AN -1

Z (Cpptje) =1y, ea) 2 > (C(”j(ihr/j(i)+l)_1{:1,“,6A})

i=0 i=0

IN-1

= 2 (Cg,, Ci+l)—1{§ieA})>N

i=0

by Lemma 15. This proves the first part.
Now take an arbitrary g e G(K,). Define {,=0 and {, = g({,_,) for
k=1,2,3,.. Suppose that /=min{n; {, is a level 2 attractor}. Let

K'={(k=0,1,2,,/—1} and K"=K\K'

Notice that g({,) € K”. It is of the same idea as in Lemma 12 to prove that

Y, C& g(¢é))= Y 1,:c4, +2xnumber of level 2 attractors in K”

SeKk” ekR”

Furthermore, K” contains all level 2 attractors. So, by the first part of this
lemma and Lemma 12,

Y CE g(é)
Ze S\

= Z + Z >N+ Z liéeA}+ Z 1{56/\:

feK’ sekR" SeK’ e K”

+ 2 x number of level 2 attractors in K" = W(K,} + N

Taking the minimum over all g’s of G(K,), we get the desired conclusion.
The proof of the last inequality is very similar. |

Proof of Lemma 14. Let {x;;j=1,2,.,2N} be the sequence of T
given as follows:

(1,1),(2,2),(1,3),(2,4), ...;(1,2),(2,3), (1, 4),.., (2, 1)
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Then the corresponding sequence {{,=0, {;=(}" ,i=0, 1, 2,.., 2N} leads

0 to the level 2 attractor {,,. It is easy to see that C({,(;, ,)=1 if
0<ig<N—1lori=2N—2when Nis odd. {; is not a level 1 attractor unless
N is odd and i=2N —2. We have

2N -1 N-0 if Niseven
-1,. v )= : : =
L ACE L) = Lgeay) {(N+1)—1 if Nisodd

/=0
Using this sequence and the sequences constructed previously in the proof

of Lemma 10, we define g first on the union of these sequences, then extend
the domain of definition to K,, so that g G(K,) and

Y. (C(E, g(&))—1,..4,)=N+the number of level 2 attractors

e kK>

In light of Lemma 16, we conclude W(K,)= W(K,)+ N.
If 7 ¢ B(0), it follows from Lemmas 13 and 16 that

Wo (K \{n}) = W(B*(0)) + WK \(B*0)u {n}))

SN+ Y Len + WEKNBAO0)U{7})
e BAO)

=N+ W(K,)-2>W(K,)

If ne B*0), n #0, then

W, (K\{n})= W(B(0\{n})+ W(K \B*(0))

214+ Y Loa + WK\B(0) = W(K))

Ze BHON{y}

In either case we conclude that
W(K,)— Wo,,(Kz\{U} )< W(K,)—W(K,)=N
and that

W(K,)— W(K,\B*{0}) A miI{l Wo (K \{n})
nek

=[W(Ky) = WK\B*{0})] v max[ W(K) — W (K\N{n})1=N 1
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6. PROOF OF THEOREMS

Proof of Theorem 1. Applying (27) to K,=S\{0,1} and by
Lemma 11, we get

. logE. T,
El_r.r}) —logd
0 if ¢eS,
=W(K )— WK \{¢ })/\mmW AKN\{})=<1 if &eS,
e 2 if &es,

E:T, is a ratio of two huge polynomials of J, by (2.2). Every n(g) is either
0 or of form §“(1 — ) for some very large a and b. The coefficients of the
polynomials are integers. The above limit is the difference of the minimum
exponents of the numerator and denominator. Hence, for £€ S,,i=0, 1, or
2, 8'E.T, converges to the ratio of the coefficients of the minimum
exponents of J, which is a rational number (depending on &). |

Proof of Theorem 2. By (2.7) and Lemma 14, with K, =S\{1},

log Eqt(S\{1 .
fim (OB ETSMID) _ k(0 A min W (K\{{}) =N
550 —logd {ek
Namely, E,t(S\{1}) is of the order (1/5)". By the strong Markov
property and the symmetry between 0 and 1,

E.T,=E.T,+E,(S\{1}), V¢eS (6.1)

E.T, is at most of order (1/6)2 by Theorem 1. Therefore E- T} is of order
(1/8)>. Again E.T, is a ratio of two huge polynomlals of 8, by (2.2). All
coeﬂiments are integers. N is the difference of the minimum exponents of
the numerator and denominator. Hence 6"E.T, converges to a rational
number (independent of &).

Starting at 0, with very small probability, {£,} will visit 1 before retur-
ning to 0. Thus {¢,} returns to 0 many times before hitting 1. By the strong
Markovian property, each excursion is independent of others. Thus the
occurence time T, of the rare event, scaled appropriately, is exponentially
distributed. The following is a rigorous proof of this observation. It follows
from (6.1) that Ve §

E(5 T7
lim

=1 2
8=0 E"T, (6.2)
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Let A;=ET, and p(-) be the probability distribution of T,/4, starting

at & Then
< 2 /T, 2 e EXT,
2(]10,= =l-P—=>=|21—z——
it ([o5]p=1-rt (202135

By (6.2) there exists &, such that as &<d,, E2T,/A;<2. Hence
#A[0,2/e]) =1 —¢ and {u(-);8,>8>0} is tight. Consequently we can
choose a sequence {d,} such that u%(-) converges weakly to a distribution
p-) for VéeS asn— +oo. Let

F={y>0]36, and ¢ such that u%({y}) > 0}

Suppose that 0 <e <1, 0 <o, and a ¢ F. By the strong Markovian property,
the asymptotic estimate of 7', and the symmetry between 0 and 1,

peAla, +00))= lim p¥([a, +w©))

H = s

lim P¥(T, > A,0)

n— o

= lim PX(T,> A, a>(1/8,)V"“=T))

"n— ot

= lim P3¢, =0) P(Ty> As0—(1/5,)" %)

n— oo

+ lim P':;"(érl =1)P{(T, = A;0—(1/6,)Y°)

n— o

H 0( [(l, +co ))
Recall a(1) defined in (1.2). Similarly, if f ¢ F,

lim P(o(1)>BA,,)

n—r L

= lim P(o(1)>p4,,>(1/0,)**">T))

n = o

= lim Py(a(1)>pA,,—(1/5,)>+")

"n— o

=uo([ B, +0))
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Now simply write go([a«, +00)}=u(a). For a, f,a+ ¢ F,

plat f)= lim PH(T,> A, (a+ B)

n— o

= llm Z P;:"( Tz 2 aA Ot é

Mo s

=) lim P:j"(a(l)BﬁA,,«”)

n = s

XA on

n#1
= lim Z Pi}"’( TJ?O(A,)',,, 51,“,,=’7)I‘(/)))
"n— 7 I]#l
= lim PY(Ty>ad,) p(f)=p(a) u( ) (63)

" s

To show that (6.3) holds for any «, # > 0, notice that F is at most a coun-
table set. Take sequences a,, »a and 8, #f such that «,,, 8, «,, + 8, ¢ F and
(6.3) holds for all «,, §,. Since u(-) is left continuous, we obtain that

u(a+B)= lim ple,+B,)= lim p(a,)u(f,)=pu(x)p(f)

n— s n—

So p(a)= Ce™“* That u(0)=1 and j(,” op(dot) =1 implies (o) =e %
Finally, by the uniqueness of the weak limit of {u¥(-)}, T,/E{T, con-
verges in law to the exponential distribution with mean 1. |

Proof of Corollary 3. We have

. log T, . log{(T,/ET,) .. logET,
1 == == 41 ==0+N=N
im0 — log o i log ¢ smo — log & + I
Remark on (1.3). We claim that (1.3) holds if £ e S\(B*0) U B*(1)).
By the Chebyshev inequality and Theorem I,

lim P.

. -
-0

log T, .
— <2 = f ¢eS,
<—log5< +s> 1 if ¢e§,

To obtain the other half, let A,={all level 2 attractors and 0,1}. If
¢e S\(B*(0)uU B*(1)), then P/&,,,,=0 or 1)>0 by (2.6), and T, =
o(A,) +T', where T’ is the first exit time of K, by {&,} starting at &_,,.
Let {=¢, ., and Ky =BYO\U{BX0)0#(, 6€A,}. Then )

. EitK,)
lim — =2,
s—0v —logd

- E';T(K_;)
50 E::T(K3)

=1 forany &, pek,
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It is similar to prove that (K;)/E ’g(K3) converges in law to the exponential
distribution with mean 1. Since {e K; < K,, T' > 1(K,) and
; log T’ S T log ©(K)
s—0 —logd” s—0 —logd

. log(t(KL)/ELKs)) .. E/(K,)
= lim lim =
5—0 —logéd o0 —logd

Thus we have shown that (1.3) holds if & € S\(B*(0) U B*(1)). By the same
argument we prove that

lim P<
-0

Remark on (1.4). A similar (and simpler) discussion can be carried
out if the torus {I,2,3,., N} x{l,2,3,., N} is replaced by the circle
{1,2,3,.., N}. In the one-dimensional case, configuration ¢ is an attractor
if and only if

log 7 _1‘@):1 it £e(BX0)u BA1)\(B'(0)u B'(1))
—logd

|Ex—1)— &) +E&x+1)—&x) <1 for x=1,2,., N

Except for {=0o0r 1, ¢ SLIN # holds for every pair of attractors (&, ). It is
easy to find a sequence {(y,(,...(,} leading 0 to an attractor that
Yu_4 €, ¢iv ) =2. These facts together imply (1.4). Comparing the two-
dimensional torus with the one-dimensional circle, one can also sense the
complexity in dealing with the higher dimensional case. We conjecture that
lim, ., (ET,)/(—log §) = N? in the three-dimensional case.
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