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Process on a Torus 

D a y u e  Chen t 

Received June 2, 1995; f inal  June 2 7, 1996 

We study the majority vote process on a two-dimensional torus in which every 
voter adopts the minority of opinion with small probability 6. We identify the 
exponent that the mean of consensus time is asymptotically (l/f~) with that 
exponent as 6 goes to 0. The proof is by a forrnula for mean exit time and by 
the metastable theory of Markov chains developed in the study of the stochastic 
lsing model. 
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tirne. 

1. I N T R O D U C T I O N  

The majority vote process is a spin system usually defined on an infinite 
lattice (ref. 10, p. 33). We now consider it on a two-dimensional torus 
T = { 1, 2, 3 ..... N} x {1, 2, 3 ..... N}.  A voter can have either of two opinions 
0 or 1, and updates its opinion at exponential times with parameter 1. At 
an exponential time, the voter adopts the opinion of the majority of its four 
neighbors and itself with probability 1 - f i  and the opinion of the minority 
with probability ft. 

Points of T are denoted by x, y, and occasionally by two coordinates, 
e.g., (1,2). Let r/(x) be the opinion of the voter at x. Then r/(x) takes 0 
or 1 only. The collection r/={r/(x); x~T}  is called a configuration. 
S =  {0, 1} T is the set of all configurations. Let x + e ~ ,  xWe2,  x + e  3 and 
x + e 4 be the adjacent sites of x. If Z4= i It/(x) - q(x + ei)l ~< 2, the voter at 
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x is in agreement with the majority of its neighbors and itself, q" is the 
configuration that differs from q only at site x, i.e., 

tl.,.(y)=~q(y) if y ~ x  
(1 - q ( x )  if y = x  

Infinitesimal rates are given as follows: 

1 - 6  if ~.=r/", Z ; = ~ l q ( x ) - q ( x + e ~ ) [ > ~ 3  
4 q ( q , ~ ) =  if 4=q", Ei=, Iq(x)-q(x+e,)l<.2 

if ~ r / " ,  V x e T  

(1.1) 

The corresponding Markov chain {~,} on S is called the majority vote 
process on a torus. Here 0 ~< 6 ~< 1. To emphasize the dependence of 6 we 
sometimes put 6 as the superscript, e.g., q'~(q, ~). 

The majority vote process {~,} is recurrent, since S is finite. Let 0 (1, 
respectively) be the configuration that all voters hold opinion 0 (1, respec- 
tively) and 

a(1) = inf{t/> 0; ~., = 1} 

T2 =o'(0) v a(1) 
(1.2) 

a(O) =inf{ t  ~> 0; ~, = 0}, 

Tl =a(O) ^ o-(1), 

Here a ^ b means the minimum of a and b, a v b the maximum of a and 
b. The time T~ is the time when all voters reach an agreement in opinion 
for the first time, and is therefore called a consensus time. T 2 is the time 
that all voters adopt the same opinion 1 after they all adopted opinion 0 
simultaneously, or vice versa. If 6 is small, it would take a very long time 
for a voters to take the opinion of the minority. We have the following 
asymptotic estimates on ET~ and ET2. 

Theorem 1. The state space S is partitioned into three disjoint sets 
So, S~ and $2. If the initial state ~ e Sk, k = 0, 1, or 2, then l im,~o 6kEr T~ 
exists and is a rational number. 

The sets So, S~, and $2 will be determined in Section 3 after more 
preparations. It follows from Theorem 1 that 

log T~ ) 
i imP c  <~e =1 ~'~eSo, Ve>0  
,~- o - log 6 

However, as we shall see later, for initial state ~eS~,  (log T~ )/( - l o g  6) 
converges in distribution to m r  e) 6~, where rio and 6t are the 
probability measures concentrating on 0 and 1 respectively, and m e e [0, 1) 
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is a number depending on ~. By the end of this paper we will determine the 
d_ for which ~r = 0, i.e., 

lim P~ ( l ~  ) 
, ~ o  - l o g d  1 ~<e =1  

By the same argument we will also give the range of ~ e $2 such that 

lim Pc ( l ~  2 ) ,~-o -- log (5 ~<e =1  (1.3) 

Theorem 2. For any initial state, (5'VET,_ converges to a rational 
number as (5~0 ,  furthermore, T2/ET2 converges in law to a random 
variable having the exponential distribution with mean 1. 

Corollary 3. For  any initial state and for any e >0 ,  

l i m P (  l~ T2 N ) 
~-o  --log(5 ~<e = 1 

flomark. It is interesting to note that in dimension one 

. IogETt  ~ IogET2 
lm - - ~  1; lim - = 2  (1.4) 

,~ - o - log (5 ,~ - 0 - log d 

Namely, the volume N does not come into play. 

Similar results have been established for the stochastic Ising 
model/4.5. ~. t2. ~4 ~6~ The inverse temperature fl of the stochastic Ising 
model plays the same role as (5 here. The motivation was to understand the 
so-called metastable behavior observed in physical experiments. There are 
hundreds of papers on metastable behavior in both the mathematical and 
physical literature (for example, refs. 2, 9, and 13). 

The results reported in this paper are inspired by works on the 
stochastic Ising model. We have chosen a very simple model. The method 
can be extended to dealing with higher dimensions, larger neighborhoods, 
or the case that infinitesimal rates are biased in 0 and 1. Similar assertions 
hold with different constants, but require substantial analysis. In ref. 6, con- 
sensus times of a voter model on the torus in Z a are studied as N - ,  oe. 

It is worth comparing the majority vote process with the stochastic 
Ising model. The stochastic Ising model is reversible with respect to the 
Gibbs measure, while the majority vote process is not. The reversibility is 
crucial to the analysis of attractors of the stochastic Ising model, c4" 5~ It is 
the Hamiltonian that gives all the information we need to compute ETt 
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and ET2. On the other hand, the majority vote process enjoys a simple 
feature. It is shown in refs. 3 and 14 that there is a hierarchic structure 
among the attractors. There are only four levels of attractors, and a charac- 
teristic quantity called C(~, r/) is either 0,1, or ~ .  This makes the analysis 
manageable. In the study of the stochastic Ising model a configuration 
called the critical droplet plays a crucial role. With probability very close 
to 1 the evolution from all spins up to all spins down goes through a 
critical droplet. The Hamiltonian of the critical droplet is the max-min if 
all configurations are classified according to the number of + 1 spins. The 
critical droplet is unique in some sense. So an important object in the study 
of the stochastic Ising model is to identify the critical droplet. There is no 
counterpart in the majority vote process. However, there are many level 2 
attractors and they somewhat share the role of the critical droplet. 

This paper is self-contained, although Theorems 1 and 2 were first 
derived by applying the results of ref. 3. We redefine attractors in Section 
3 and use implicitly the idea of ref. 3. Our approach does not increase 
redundancy, because there are only four levels in the hierarchic structure of 
attractors. It is for completeness that we include the proof  of the second 
part of Theorem 2. The original proof can be found in ref. 3. In Section 2 
we first recall the matrix tree theorem. Applying this theorem, we convert 
the proof  of Theorems 1 and 2 to finding a good map from a subset of S 
into S. The desired estimate on the exponents is obtained through a careful 
(and somewhat tedious) study in eight lemmas. Our approach is quite 
simple if the detailed proof of the lemmas is skipped. 

2. PRELIMINARIES 

Suppose that S = { ~, q ..... (} is finite and K is a proper subset of S. 

D e f i n i t i o n  4. G(K) is the set of maps g: K--, S with the property 
that g maps no nonempty subset of K into itself. We say that g ~ G(K) leads 

~ K to r/~ SkK if there is a sequence {(~ ..... (,,} of distinct elements in K 
such that 

g ( ~ ) = ( , ,  g((, ,)=r/ ,  and g ( ~ f l = ( j + , ,  1 ~ j < ~ n -  1 (2.1) 

Let G~,~(K)= {g~ G(K); g leads ~ to r/}. 

Let {X,} be a continuous-time Markov chain on S, q(~,r/) the 
infinitesimal rate from ~ to q. Let z~(g)= l-I,. ~ K q(~, g(~.)) for g ~ G(K). The 
first exit t#ne of Markov chain { X,} is 

r(K) = inf{ t >/0; X, r K} 
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Lemma 5. Suppose that K is a proper subset of S, ~ e K, and ~/r K. 
Suppose that ~ . r 1 6 2 1 6 2  and 0 < - q ( ( , ( ) < ~  for any 
( ~ K. Then 

Zg E G~q(K) ~(g) 
P( K, = I Xo  = r ) = - ;Cf i  

Er r(K) = ~ ~ a~r~ ~(g) (2.2) 

This lemma is called the matrix tree theorem in ref. 7. It was known 
40 years ago. ~1 For the proof, see ref. 8, Lemmas 3.3 and 3.4 of Chapter 6. 
For discrete-time Markov chains it is also derived by an elementary 
method of determinant in ref. 3. 

Applying this lemma to the majority vote process, we find that every 
n(g) is 0 or of form 6 ~ ( 1 - 6 )  b with very large integers a and b. Then 
Er is the ratio of two huge polynomials of 6 by (2.2). To estimate 
Er(K) asymptotically as 6 ~ 0, we need to know the difference o f  the mini- 
mum exponents of 6 in the two polynomials. Consider the family of 
infinitesimal rates {q'~((, q); 6 ~ [0, 1 ] } indexed by 3. Introduce 

C ( ~ , q ) = { ~ m , ~ o [ - l o g q ' ~ ( r  if q~ ~/) = 0 
if qO(~, q ) > 0  

(2.3) 

with the convention that log 0 = - oo. In addition, let C((, ()  = 0 for any 
~ S. For  subset K c S, define 

W(K)= min ~ C((, g(())  (2.4) 
geG(K) ( E K  

Wr = min Y' C((, g(()) (2.5) 
g~G~q(K) ~EK 

They are the minimum exponents of the related polynomials of 6. It follows 
from Lemma 5 that, assuming that ~ ~ K and r/r K, 

lim - l o g  P~( X~t KI = ~1) = __ W( K) + W~,,(K) (2.6) 
,~ ~ o -- log 6 

lim log E~r(K) = W(K) - W(K\{~}) ^ min Wr ) 
,~-o - - log~  r 

(2.7) 
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3. A N A L Y S I S  ON A T T R A C T O R S  

According to (2.3), for the majority vote process, 

i if Y'-.,-~I [~(x)--q(x)[ >/2 
C(~,r /)= if r / = r  I~ (x+e ; ) - - ( (x ) l>~3  (3.1) 

if r /=~",  E4=, Jr <~2 

D e f i n i t i o n  6. Configuration ( is called an attractor if 

4 

I r  for all x e T  
;=~ 

We say attractor ( is of level 1 if max,. ~ 1" ~4= i I(( x + es) - ((x)l = 2. 
Let A be the set of all level 1 attractors. 
We say attractor ( is of level 2 if max,.~T ~ =  ~ I((x + e i ) - - ( (x)[  = 1. 

tTomark. The definition of level is altered from that of refs. 3 and 14. 
Notice that 0 and 1 are the only attractors that satisfy 

4 

max ~ l r  = 0  
.v i =  I 

It is often helpful to visualize ~ by identifying ~ with the subset { x ~T ;  
( (x)  = 1}. For  example, if~ is a level 2 attractor, { x e T ;  ~ (x )=  l} consists 

Fig. 1. Some attractors of level I lupper) and level 2 (Iower). {.veT; i/(.v) = I } is tile shaded 
a rea. 
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of several columns or rows. Some typical subsets of T corresponding to 
attractors are shown in Fig. 1. 

Definition 7. For attractor (, define B~( ( )={ t / eSI the re  is a 
sequence qo, t/,,...,q,, such that qo=t/,  t / , ,=(,  and C(q ,q , -+ t )=0  for 
i=0 ,  1,..., n -  1}. 

L e m m a  8. 

(i) I f~ and r/are attractors and i f ( : ~ / ,  then qCB'(~). 
(ii) If ( is an attractor, then there is a map geG(Bt(()\{(}) such 

that g leads every (eB~(( ) \{ (}  to ( in the sense of (2.1) and 

F~ c(~ ,  g(~))  = o = W(B~(~)\{~} ) 

(iii) W(BI(~)) = 1 if r is a level 1 attractor. 

Proof. (i) If t/eBl(~), then there exists a sequence leading r / to  ~. In 
particular, there exists r/~ = t/-" for some x �9 T such that C(t/, t/") = O. On the 
other hand, ~7 is an attractor if and only if C(q, t /")= 1 for all x s T. This 
contradiction shows that 17 r B~(r 

(ii) We first define g (~ )=~  if C(~,~)=0.  Then D = { ~ ; C ( ~ , ~ ) = 0 ,  
~ :/: ~} is a subset of B~(~')\{~}. Next we extend D step by step. If ~' r D and 
if there exists ~ �9 D such that C(~', ~ ) =  0, define g(~ ' )=  3. By definition of 
BI(() there is always such a pair (~ and ~') unless D = Ba(~)\{~} already. 
On the other hand, since B~(~) is finite, the extension of D to BJ(()\{(} 
can-be completed in finite steps. Map g leads every ~. e Bt(~)\{~} to ( and 
Y~r C(~, g(~))=0.  Now, W(B~(~)\{~'})~>0 by (2.4) and is mini- 
mized by g. 

(iii) If ~ is a level 1 attractor, by definition there is x e T  such that 
Z4=~ [C(x+ei)-~(x)[ =2. Notice that ~-"r Define g ' ( ( ) = ( " ,  and 
g ' (~)=g(~)  defined in part (ii) if ~eB~(() \{(} .  Then g'sG(B~(()) and 
~r On the other hand, for any feG(B~(~)), 
Y.r f(~)) >/C((, f ( ( ) )  = 1. Hence W(B~(()) >~ 1 and is minimized 
byg ' .  I 

Remarks." (1) This is a rather simple fact, but it is a basic ingredient 
of the subsequent arguments. 

(2) The proof of (ii) and (iii) consists of two parts: to find a lower 
bound and to find a good map that reaches the lower bound. It is delicate 
to make sure that g maps no subset of K into itself. This is guaranteed, e.g., 
in part (ii) by the fact that g leads every ~ to ~ (see Fig. 2). 
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Fig. 2. Maps g constructed in the proof of Lemma 8. part (ii). 

(3) It is clear f rom the p roo f  that  the s ta tement  is still valid if BI ( ( )  
or  B~(() \{(}  is replaced by a reasonable subset, e.g., Bl( ( ) \B]( r / ) .  

(4) In most  cases there are several x 's  such that  Z4=l  ] ( ( x + e / ) -  
((x)[ = 2. This enables us to choose x with addit ional properties, e.g., ( (x)  = 1. 

(5) In general, Bl(r/)nBl(()#~. For  example,  if N is even, con-  
figurations r/' and r/" are in every Bt(. ), where 

{ x e T ;  r / ( x ) =  1} -- {(m, n ) e T ; m  + n = e v e n }  

{ x e T ;  r / " ( x ) =  1} = {(in, n ) e T ;  rn + n - - o d d }  

(i) 
D e f i n i t i o n  9. (i) For  a t t rac tors  17 and (, we say r/===> ( if there is 

a sequence r/o, r/i r/,, such that  r/o : r/, r/,, = ~', and x~"-  ~ C(r/,, r/;+ ~) = 1. ' " "  ~ . ~ i =  0 

(ii) Fo r  a t t rac tors  1/ and (, we say r/ i t~ ~ if there is a sequence of 

a t t rac tors  ~o , ( i  ..... ~,, such that  Go=r/,  ~,,=~, and ~ ; ~ ( ~ + ,  for 
i = 0 ,  1 ..... n - 1 .  

(iii) For  ( =  0, 1 or  a level 2 a t t ractor ,  define 

B2(() = [..) {B'(r/)[  17 is an a t t rac tor  and r/ ~l~ (} 

I _ e m m a  10. (i) B2(() contains only one level 2 attractor, namely ( itself. 

(ii) If  ( is 0, 1, or  a level 2 at t ractor ,  then there is a m a p  g e 
G(B2(()\{(}) such that  g leads every ~ e a 2 ( ( ) \ { ( }  to ( and 

~ a2(,D\{ L. } ,~ B2(C)\{ ~1 

where A is the set of  all level 1 attractors. ~--.~.~s'-(O\{C} 1 I*~AI is the n u m b e r  
of  level 1 a t t rac tors  in B2(~)\{~}. 

(iii) I4/(B2(~)) = 2 + Y[,~ ~2~C I 1 t*~AI if ~ is a level 2 at t ractor .  
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Proof. (i) Suppose that ( is a level 2 attractor and that {t/o, r/t ..... r/,,} 
is a sequence of distinct elements such that ( = t / o  and t/,, is another 
attractor. Then C(t/0, r / t )=  o~ or r/t = r In the latter case, 

4 4 

Y'. I r 1 6 2  <~ 1 ~ ~ I t / t (x+eD--q , (x ) l  >13 
i = l  i = 1  

So t/t is not an attractor and n ~> 2. Either C(t/~, r/,_) = oo or we can assume 
that t/2 = rl~', x # y. We have 

4 4 

I~ (y+e~) -~ (y ) l  <~ 1 ==. ~ I t / , ( y + e ~ ) - q , ( y ) l  <~2 
i = t  i = l  

So C(qt, ~12) = 1. Consequently ~ " -  t CO/, ~/~+ ~) >1 C(t/o, r/t) + C(t/~ q2) / ' i  = 0 

~> 2. Hence there is no attractor ~/ such that ( ~ q. In other words, ( is 
not contained in any B-~(~/) i f  t / #  (. 

(ii) The proof is very similar to that of Lemma 8. For  any 
f ~  G(B2(()\{ ~'} ), 

e B-'(4)\{ t~} ~ ~ B2(~)\{ 4} ~ e B- ' (4) \ I  (} 

The last equality holds because C(~, ~") = 1 for any x if ~ is an attractor. 
Since f is arbitrary, W(B2(()\{(})~> number of level 1 attractors in 

We now construct a map g e G(B'-(O\{(} ) with the desired properties. 
First take D = B t ( ~ ) \ { ( }  and g18'1r162 by part (ii) of Lemma 8. Then g 
leads every ~ e D to ( and 

C(~ ,g (~) )=  ~ llr I (3.2) 
~ D  4 ~ O  

Suppose now that t/ ~ (. By definition, there is a sequence {qo, q, ..... r/,,} 
such that r/o = q, t/,, = ( and ~ ' " -  ~ i=o  C(r/;, q~+ , ) =  1. Let l =  min{ i; r/~ E B'(O}.  
We extend D to {t/o,'1, ..... t / , _ , } w B ' ( ( ) \ { ( }  by defining g(t /~)=q;+t,  
i = 0 ,  1,2 ..... l - 1 .  Then extend D to B l ( r l ) w B l ( ( ) \ { ( }  as we did in the 
proof of part (ii) of Lemma 8. After extension, (3.2) holds with D =  

B~(t/) w Bt( ( ) \{ (} .  Next, choose another attractor ( such that ( ~ ( or 

~ t /and repeat the procedure again. After a finite number of extensions 
we get a map g defined on the entire B-'(()\{(} with the desired properties. 

(iii) It is easy to prove that W(B2(())>~2+Y~r162 We now 
construct a map g e G(B2(()) that reaches the minimum. By the symmetry 
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between the two coordinates we may assume that there exists k such that either 

(((l, k)) = 1 

C ( ( l , k + l ) ) = ( ( ( l , k + 2 ) ) = ( ( ( l , k + 3 ) ) = O  for all I<<.I<~N 

o r  

(((l,  k)) = (((l, k + 3)) = 1 

C ( ( l , k + l ) ) = ( ( ( l , k + 2 ) ) = O  for all I<~I<~N 

_ .V l  In the first case, let Co=C and ( / - C ~ _ t ,  where x ~ = ( l , k + l )  for 
I =  1, 2 ..... N. Then  (N is a level 2 at t ractor;  hence (N r B2(C) by part  (i). ( /  
is a level 1 a t t rac tor  for 1=2 ,  3 ..... N - 2 ;  (i  and CN-~ are not  attractors.  
C(CN-l ,  C,v) = 0 and C(G, Cl+l) = 1 for l = 0 ,  1, 2, 3 ..... N - 2 .  We have 

N - - I  

( C((I, CI+ I)-- I {r ) = (N- -1 )  -- (N--  3) = 2 
/ = 0  

In the second case, let x_,/_ ~ = (l, k + 1 ), x2 /=  (l, k + 2) for l = 1, 2 ..... N, 
_ .x" n ~ _  and Co = ( ,  C , , - ( , , _  i for n l, 2 ..... 2N. Then  (2,v C B-'((); C2/ is a level 1 

at tractor  i f / =  1, 2, 3 ..... N - -  2, and (2N- 2 and (_,/- ~ are not  attractors for l = l, 
2, 3 ..... N; C((,,, C,,+ ~) = 1 if and only i fn  = 0 ,  l, 2, 4, 6 ..... 2 N - 4 .  We have 

2 N - -  I 

~. ( C ( ( , , , ( , , + ~ ) - I { r  
I I = O  

In either case, define g((,,) = (,, + i, n = 0, 1, 2,..., and extend the domain  
of  definition to the whole B2(C), as we did in the p roof  of  Lemma 8, so that  
~ 8 : ~  (C(( ,  g ( ~ ) ) -  11r The desired conclusion now follows. II 

4. L E M M A S  FOR THEOREM 1 

Let K, = S \ { 0 ,  1}, 

$2 = U{ B2(q)[q is a level 2 attractor} 

St = U{Bl (q ) I t / i s  a level 1 at tractor} \$2  

So = S \ ( &  u S,_) 

Notice that So, S~ and $2 are mutual ly  disjoint. This section is devoted to 
the p roo f  of the following statement. 

Lemma 11. We have 

f i  if ~ ~ So W ( K ~ ) -  W(Kt \{~})  ^ min Wer  if ~ S t  

~K,  if ~ $ 2  
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Lemma 12. W(KI) = number of level 1 attractors in Ki + 2 x num- 
ber of level 2 attractors in K l . 

Proof. As observed in the proof of Lemma 10, if ( is a level 2 attrac- 
tor, ("  is not an attractor and C((, U ) +  C((", ((")-") = 2 for any x, y e T ,  
x r  Suppose that ( and q are level 2 attractors, gEG(KI), g(()=(-" ,  
g(~/)=r/y for some x, yET; then g(()~g(rl). Otherwise {(,(",~/} is a 
sequence leading ( to r/, and C((", q)= C(qY, rl)=O. This implies that 

I l l  
~- ~ tl, contradicting the fact that ( is a level 2 attractor. Therefore for any 
gEG(KI), 

~' C((, g(()) >/ ~ C(~, g(()) 
( ~ KI ~ is a level 

I a t t r a c t o r  

+ ~, [C((,  g(())  + C(g((), g(g(~)))] 
( is a level 
2 a t t r a c t o r  

= number of level 1 attractors 

+ 2 x number of level 2 attactors 

and W(KI) shares the same lower bound. 
For  every level 2 attractor we constructed in the proof of part (iii) of 

Lemma 10 a sequence {(i; i = 0 ,  1, 2, 3,..} leading the level 2 attractor 
( =  (o to another level 2 attractor or 1. Let D be the union of these sequen- 
ces. Define g( ( i )=(~+l  for (~ ED. Then g maps no subset of D into itself 
because {xET;  (~(x)= 1} is increasing in i. Furthermore 

C(~, g ( ~ ) ) -  1C~A~) = ~ Y'. (C((,, (,+ ,) -- 1I~,~ A~ ) 
�9 D ( is a level / 

2 a t t r a c t o r  

= ~. 2 = 2 x n u m b e r o f l e v e l 2 a t t a c t o r s  (4.1) 
( is a level 
2 a t t r a c t o r  

Extend D to Ki and keep (4.1), as we did in the proof of Lemma 8. Then 
gE G(KI) and Zr C((, g(()) reaches the lower bound. This proves the 
lemma. I 

L e m m a ' 1 3 .  

= { 
We have 

W(KI)-- 2 

W(KI) -- 1 

W(KI) 

if ( is a level 2 attractor 

if ( i s  a level 1 attractor or i f U  is 

a level 2 attractor for some x E T 

otherwise 
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Furthermore, Wer  W(K,\{~}) if ~ is a level 2 attractor and 
~B2(~ ' ) ,  or if ( is a level 1 attractor and ~ B ~ ( ~ ) .  

The proof  is identical with that of Lemmas l0 and 12, so we skip the 
details. 

Proof of Lemma 1 1. If ~ e $2, there is a level 2 attractor ff such that 
~eB2(E). By Lemma 13, 

Wr I \{(}  ) = W(K, \{~'} ) = W(Kt ) -- 2 

W~,,(K~\{q})>~ W(K~\{q})>~ W ( K t ) - 2  forany  q~Kt 

So 

W ( K , ) -  W(K,\{~})  ^ min Wcr 
t ~ K I  

= [ W ( K I ) -  W(K, \{~}) ]  v max[  W ( K , ) -  W~(K, \{~ '}) ]  = 2  

If ~ = S r ,  there is a level 1 attractor ~ such that ~ B ~ ( ~ ) .  By Lemma 
13, W(K~)-Wcr and for any qeK~ other than a level 2 
attractor 

W o , ( K  , \ { r / }  ) /> W(K, \ { , I }  ) 1> W(K~ ) - l (4.2) 

If (4.2) also holds for all level 2 attractors, then 

W ( K , ) -  W(K,\{~} ^ min Wc~(K,\{E}) 
~ E K I  

= I- W ( K , ) -  W(K, \{~}) ]  v max[  W ( K t ) -  Wr162 = I 
~ K I  

Suppose now that ~' is a level 2 attractor and gEGr162 Let 
{~o,~J ..... ~,,} be the sequence leading ~=~o  to ( '=~ , , .  Namely, 
~k + t = g(~k), k =0 ,  1, 2 ..... n -  1. Suppose that ~/is the first attractor in the 
sequence. If / - i  5Zi=o C(~j, ~+  i) = 0 and w, , -  l - w, , -  t z..~i=o C(~i,~i+l)-X..,i=l I{~,EA}, it 
would follow that ~ s B~(~) c Bz(~'), contradicting the fact that ~ r $2. Thus 

and 

n - -  I n -  [ 

i = 0  i = 0  

y 
qeKl\{~'} 

n - -  I 

c(,7, g(~))= 2 c(~;,~;+,)+ y" c(,~, g(~)) 

/> 1 + W(K, \ { ( ' } )=  W ( K , ) -  1 
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Therefore W~r \{~'}) >~ W(K,)- 1. This verifies (4.2) and completes the 
analysis of the case that ~ e S~. 

We skip the similar proof of the case that ~ e So. | 

5. L E M M A S  FOR T H E O R E M  2 

Lemma 14. Le tK2=S\ {1  } =K,  w {0}. Then 

W(K2) -  W(K2\{0}) ^ min Wo,,(Kz\{rl})=N 
q E KI 

The proof is very long, and is divided into three parts. First, consider 
a sequence {x;, i-- l, 2 ..... 2N} consisting of 

(1, 1), (I, 2), (1, 3) ..... (1, N), (2, 1), (2, 2), (2, 3) ..... (2, N) (5.1) 

(with possibly different order). Then {Go=0, (~=(;~' ~, i =  1, 2 ..... 2N} is a 
sequence leading 0 to the level 2 attractor (2N (Fig. 3a). (2,,, is a level l 
attractor (Fig. 3b) if 

k 

{ x e T ;  (2,,,(x)= I} = U {(1, aft, (2, aj) ..... (I, bfl, (2, bfl} 
j = l  

k 

~. (b/-a/+l)=m; bj-a/>>.l, a/+~-b/>~3 Vj (5.2) 
j =  1 

Lemma 15. We have 

2 N - I  

2 
j = 0 

(C((/, ( j+,)  - 1 ICj~At ) >/N 

In general, if (2,,, is of form (5.2), then 

2 m -  1 

~. (C((j,(j+,)-llr (5.3) 
j = O  

Proof. If (2,,, is the first level 1 attractor in the sequence, then 
2m I ~,=0 1Cr = 0  and C(~_~, (~) = 1 if x; is the first of (1, s) and (2, s) in 

the sequence or x ;= (1 ,  aj), (2, aJ), (1, bj), or (2, bj) for some j. So (5.3) is 
true. 

We now apply induction. Suppose (5.3) is true for attractor (2 .... and 
(2,,, is the next level 1 attractor in the sequence and is of the form (5.2). 
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Fig. 3. 

d~ 3,,. 
! 

{a) {_,,v and (b) ~z,,, of form (5.2) {.vaT: ~.t(x)= I} is the shaded area. 

Any sequence {(2,,,, ~2,,,+ ~ ..... (_~,,,,} leading ~2,,, to (2,,, is virtually one of the 
following three cases (Fig. 4): 

(i) 

{x e T; ~'2,,(x) = 1 } = {(1, 1 ), (2, 1 ), (1, 2), (2, 2) ..... (1, m), (2, m)} 

{ x e T ;  ~.2,,,,(x)= 1} = {( 1, 1), (2, 1), (1, 2), (2, 2) ..... (1, m'), (2, m')} 

Assume that  (; = (}"L i Then C((;_ 1, ( / ) =  1 if Xi = (1, m'), (2, m'), and first 
of (I, s) and (2, s) in the sequence for m +  1 ~s<~m'- 1. Note again that  
(j is not an at tractor for 2m < j < 2m', but ~_,,,, is. Hence 

2,';q' - -  ] 2 m ' - -  I 

E C((/.(/+,)>~m'-m+l. E I(r 
i = 2 ~ .  j = 2 m  

= 1  

By the induction hypothesis, (5.3) holds with k =  1. We have 
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I J 
C.o.~e ii) 

I i 
Case h'i) 

Fig. 4. 

I i 
Three basic cases of (z,,, (left) and (2,,,' (right). 

2 m '  - -  I 

Y' (C(~,., C;+ ,) - 1 ~c,~AI ) 
. / =  2111 

2 m -  I 2 m ' - -  I 

= ~ + ~ > ~ ( m + l ) + ( m ' - m + l - 1 ) = m ' + l  
/ = 0 j = 2 m  

(ii) Assume tha t  ~,_,,, is the .same as case (i) and  (5.3) ho lds  with 
k = 1, and  tha t  

{ x ~ T ;  ~2,,,,(x) = 1} 

= {(1, 1), (2, 1), (1, 2), (2, 2)v.., (1, m), (2, m)} 

w {(1, a +  1 + m ) ,  (2, a +  1 + m )  ..... (1, a+m'), (2, a + m ' ) }  
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Then C ( ~ j _ ~ , ~ i ) = l  if Xi=(1, m + a + l ) ,  (2, m + a + l ) ,  (1,m'+a), 
(2, m ' + a ) ,  as well as the first ( l , s )  and (2, s) in the sequence for 
m + a + 2 ~ < s < ~ a + m ' -  1. We have 

2 m ' -  I 

E 
j = 2 m  

( C ( f f j , ~ i + | ) -  II~;~AI) ~ > m ' - m  + 2 -  1 

2 m ' -  I 2 o l -  I 2 m '  I 

E = E + E  
j = 0 .i ~ 0 j = 2 m  

>~(m+ 1 ) + ( m ' - m +  1 ) = m '  + 2  

(iii) Suppose that (_~,,,, is the same case (i), 

{x 6 T; ~':,,,(x)= 1} 

= {(1, 1), (2, 1), (1, 2), (2, 2),..., (I, a), (2, a)} 

w {(1, a +  1 + m ' - m ) ,  (2, a +  1 + m ' - m )  ..... (1, m'L (2, m')} 

and (5.3) holds with k = 2. Then C(ff~. | ,  ~i) = 1 if -~i is the first of ( 1, s) and 
(2, s) in the sequence tbr a + 1 ~< s ~< a + ( m ' - m ) .  We have 

2 m ' -  | 

E 
i = 2 m  

(C(~j, ~ j + l ) -  l{r  1 

2 m ' - -  I 2 m -  I 2 m '  I 

Z = Z + Z > ~ m + 2 + ( m ' - m - 1 ) = m ' + l  
i = 0 j = 0 j = 2 m  

We have shown that  (5.3) holds for all ~,_,,, of  form (5.2). Suppose now 
that ~ is the first configuration (see Fig. 5) in the sequence such that 

{ x ~ T ; Q ( x ) - - -  1} = {(1, 1), (1 ,2 )  ..... (1, N)} 

or  {(2, 1 ) , (2 ,2 )  ..... (2, N)} 

Suppose that ~,,,, is the last level 1 a t t rac tor  of  form (5.2) before ~ in the 
sequence. (In the extreme case i f : , ,=0 . )  Then ffj is not an a t t ractor  for 

Fig. 5. 

[ 
The first configuration ~t ill the sequence {.v ~ T: Ct(x) = I } D {(I, I L (I. 2) ..... (1, N)} 

or {(2, lL(2,2t,...,12, N1}. 
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2m < j < l. Note  that  C(~.i_ l, r = 1 if Xi is the first of ( 1, s) and (2, s) in 
the sequence and Q~,,,((1, s ) ) =  0. There are N - m  such s's. Hence, 

/ - - I  

Z 
j = 2 m  

Lemma 16. 
at t ractor  Jl,,, then 

(C(~i, ~i+ ~ ) -  1 { ~  AI)/> N - - m  -- 1 

2 N -  I 2 m -  I I - -  I 

E >1 Z + E > ~ m + l + N - m - - l = N  II 
j = 11 ,j = 0 j = 2m 

If the sequence {qo, r/~ ..... ~I,,} leads 0 to the level 2 

~. (C(qi,  qi+ t ) -  1 {,/j~ A}) >/N 
i = o 

Furthermore,  W(K,_) >>. W(K~) + N and W(B2(O)) >1 N +  Y:r ~'-(o~ 1 I~A', " 

Proof. Assume that  r/o = 0, Jl/--- r/]~_ ~, j = 1, 2 ..... n, and r/. is a level 2 
attractor.  Note  that  the same y may appear  two or more times in the 
sequence {yj, j =  1, 2 ..... n}. Let us call the subset {(k, I), (k, 2) ..... (k, N)} 
a column of  T and the subset {( 1, k), (2, k) ..... (N, k)} a row of T. Because 
of the symmetry between column and row, we shall only treat columns. 
Note also that  { y ~ T; q . ( y ) =  1 } contains at least two points in every row, 
and n>~2N. Write 3'i as (y.i(l),  y/(2)).  Define a map ~b: {Y.i, 1 <<.j<<.n} 
T w { co } as follows: 

( 1, s) if yj is the first point  of  row s in the sequence 
and Yt( 1 ) is odd, yj(2) = s 

or if yj  is the second point  of  row s in the sequence, 
y/(2)  = s, y~ the first point  of  row s in the 
sequence, vi( 1 ) is even, and y; :~ 35 

q~()!~) = (2, s) if yj is the first of  row s in the sequence, 
y i(2) = s, and yj( 1 ) is even 

or  if Yi is the second point  of row s in the sequence, 
y j(2) = s, Yi the first point  of  row s in the 
sequence, and y ; (1 ) i s  odd, and y~ v ~ yj 

oo otherwise 

Map ~b translates every s horizontal ly to the first two columns or the 
cemetery (or) ,  with little at tention to the pari ty of  the first coordinate  o fy j .  
The fact that { y 6T ;  q . ( y ) =  1 } contains at least two points in every row 
guarantees that the subsequent  ~b(yi~i)), after deleting all ~ ' s ,  is a sequence 

822.,~6 3 4 - 2 2  
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of (5.1). Rewrite ~b(yj. 0 as x;, i =  1, 2 ..... 2N and let (0 = 0 ,  (~=(7 ' -  ,- Since 
ys's are more spread and x~'s are more concentrated, x~ is likely to have 
more neighbors than the corresponding y j . .  and (~ is more likely to be a 
level 1 at tractor than the corresponding ~b.~ is. That  is, 

C ( ( i , ~ i + l ) < ~  C(rli ,  i>,r l i l i~+l)  a n d  1 {r /> 1 {'/s(,leAl 

We have 

n -  I 2 N -  1 

(C(q/.q.S+,)--ll,h~Al) >/ ~ (C(r/S,~.qS.+~)--ll,~,.,~Al) 
. j  = o i = (i 

2 N -  1 

>/ ~ (C((;.~',+l)-ll;,~ai)>~ N 
i=l) 

by Lemma 15. This proves the first part. 
Now take an arbitrary g E G(K2). Define (o = 0 and ( ,  = g ( ( , _  ~) for 

k =  l, 2, 3 ..... Suppose that l = m i n { n ;  (,, is a level 2 attractor}. Let 

K'  = { ( , ,  k = 0, 1, 2 ..... l -  1 } and K" = K2\K' 

Notice that g ( ( / ) e  K". It is of the same idea as in Lemma 12 to prove that 

C(~, g(~)) >/ ~ 1 I*~ A} + 2 x number  of level 2 attractors in K" 
4~K" 4 e K "  

Furthermore, K" contains all level 2 attractors. So, by the first part  of this 
lemma and Lemma 12, 

5", c(~, g(4)) 

= E + E >~N+ E II<~AI + E llr 
4~h" ,5, EK" .~.~h" ~.~K" 

+ 2  x number of  level 2 attractors in K" = W(Kt) + N  

Taking the minimum over all g ' s  of G(K2), we get the desired conclusion. 
The proof  of the last inequality is very similar. II 

Proof of  Lemma 14. Let { x i ; j = I , 2  ..... 2N} be the sequence o f T  
given as follows: 

( 1 , 1 ) , ( 2 , 2 ) , ( 1 , 3 ) , ( 2 , 4 ) ,  ( 1 , 2 ) , ( 2 , 3 ) , ( 1 , 4 )  ..... (2,1) 
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Then the cor responding  sequence {(o = 0 ,  ( i =  ~',."L t, i = 0 ,  1, 2 ..... 2N} leads 
0 to the level 2 a t t rac tor  -Q~N- It is easy to see that  C ( f f ; , ~ + ~ ) = l  if 
0 ~< i ~< N -  1 or  i = 2 N -  2 when N is odd. ~j is not  a level 1 a t t rac tor  unless 
N is odd  and i = 2 N -  2. We have 

2^, ~ f N - - 0  if N i s e v e n  
(C(~'/, ~/+ ,) - 1 Ir162 ) = "[ = N 

/=o ( N + I ) - - I  if N i s  odd 

Using this sequence and the sequences constructed previously in the p roo f  
of L e m m a  10, we define g first on the union of  these sequences, then extend 
the domain  of  definition to K 2, so that  g e  G(K2) and 

(C(~., g ( ~ ) ) -  1 / r 1 6 2  n u m b e r  of  level 2 a t t rac tors  
4E K2 

In light of  L e m m a  16, we conclude W ( K 2 )  = W(K~) + N. 
I f  llq~B2(O), it follows f rom L e m m a s  13 and  16 that  

W,,,,(K2\{,~} ) > W(B2(O)) + W(K, \(B:(O) u {q} )) 

>>.N+ ~ IIr 
e B2(O) 

~ > N +  W ( K t ) - 2  > W(Kj) 

If q ~ B2(0), r / # 0 ,  then 

Wo,,(K2\{q} ) >! W(B2(O)\{r/}) + W(K,\B2(O)) 

~>1+ ~ IIr 
~e B2(O)\{q} 

In either case we conclude that  

W ( K 2 ) -  Wo,,(K2\{q} ) ~< W ( K 2 ) -  W(K,)= N 

and that  

W ( K 2 ) -  W(K2\B2{O} ) A min Wo,,(K2\{q } ) 
q ~ K| 

= [ W(K2)- W(K2\B2{O} )] v m a x [  W ( K 2 ) -  Wo,,(K2\{q } )] = N  II 
qEKI 
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6. P R O O F  OF T H E O R E M S  

Proof o f  Theorem 1. Applying (2.7) to K , = S \ { 0 , 1 }  and by 
Lemma 11, we get 

lim log Er T~ 
,~o  - l o g 6  

i if ~ e So 
= W ( K t ) - W ( K , k { d . } ) A m i n W ~ c ( K , \ { ( } ) =  if ~ e S ,  

r " if ~.eS2 

Er T, is a ratio of two huge polynomials of d, by (2.2). Every re(g) is either 
0 or of form 6"(1 - d )  h for some very large a and b. The coefficients of the 
polynomials are integers. The above limit is the difference of the minimum 
exponents of the numerator and denominator. Hence, for ~ e S t, i = 0, 1, or 
2, 6SECT, converges to the ratio of the coefficients of the minimum 
exponents of O, which is a rational number (depending on ~). II 

Proof o f  Theorem 2. By (2.7) and Lemma 14, with K2=S\{1} ,  

lira log Eor(S\{1}) - W(K2)-  W(K_,\{0}) ^ min W,r = N  
,~o - l o g d  ~K2 

Namely, Eor(S\{ l})  is of the order (1/6) N. By the strong Markov 
property and the symmetry between 0 and l, 

E c T 2 = E r  V ~ e S  (6.1) 

E~ Ti is at most of order (1/6) 2, by Theorem 1. Therefore E~ 7_, is of order 
(l/g) u. Again E~T2 is a ratio of two huge polynomials of 6, by (2.2). All 
coefficients are integers. N is the difference of the minimum exponents of 
the numerator and denominator. Hence dNEcT 2 converges to a rational 
number (independent of {). 

Starting at 0, with very small probability, { {,} will visit 1 before retur- 
ning to 0. Thus {G} returns to 0 many times before hitting 1. By the strong 
Markovian property, each excursion is independent of others. Thus the 
occurence time T2 of the rare event, scaled appropriately, is exponentially 
distributed. The following is a rigorous proof of this observation. It follows 
from (6.1) that V~eS 

E#r  _ 

lim - 1 (6.2) 
,~ ~ o EgT 2 



Consensus Times of Majority Vote Process 799 

Let A,~= ,i . . E o T  2 and p~( ) be the probability distribution of T2/A,~ starting 
at ~. Then 

~r O, ) = 1  r \A,~ >11 2 A~ 

By (6.2) there exists c5 o such that as 5<~5o, E'~T,_/A,~<~2. Hence 
l,~([0, 2/el)>_- 1 --e and {p~(.); 5o>~6>0} is tight. Consequently we can 
choose a sequence {6,} such that/t~"(.) converges weakly to a distribution 
llr ) for V~ e S as n ~ + oo. Let 

F = {), ~> 0136,, and r such that/t  ~"({ y} ) > O} 

Suppose that 0 < e < 1, 0 < ~, and a r F. By the strong Markovian property, 
the asymptotic estimate of T~ and the symmetry between 0 and 1, 

.ur +oo))=, , l im/a~"([~,  + ~ ) )  

= l i m  P~"(TI >~A,~,,a) 

= l i m  P~"(T2>~A,~,o~>(1/c~,,)N-':>~ Ti)  
I t  ~ r1_ 

1/c~ ,,) ) P o  ( T2 >1 A,~,~-- ( A . . . .  Pc (r = 0) '~" = , l i m  '~" 

+ lim '~" P e ( ~ r = 1 ) P~"( T 2 >1 A,~,,o; --  ( 1 / ~ . )  N - ~;) 
I t  ~ c.r 

=/~,([~, +co)) 

Recall a( 1 ) defined in (1.2). Similarly, if flr F, 

lim '~" P .  (a(1) >~[3A,s,,) 
I I  ~ r~  

= l i m  P ; l " ( a ( l )  >~flA,s,> (1/6,,)z+':> T,) 
1 1 - - ~ 2 _  

- -  lim Po'l"(cr(1 )>~flA,s,, - -  ( 1 / 5 , , )  z+ ' : )  
t t  ~ ,3C 

=#o([b', +c~)) 
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Now simply write po([a ,  + o v ) ) = p ( a ) .  For  oqfl, o~+flCF, 

p ( ~ + f l ) =  lim Po(T2'~" >~Aa,,(ot+ fl)) 

= '~" ) >113A,~,, ) lim ~ P;I"( T2 >~ ~xA,~,,, ~,~Aa,, = q) lim P,t (a( 1 
It  ~ ,-z. q ~ I It  ~ ,-': 

= lim ~ P~"(T2>~o~A,,,,,(,,,,~,,=rl)p([3) 
, ' l  ~ , z  q # I 

= l i ra  P;]"(T,_>~o~A,~,,)t~(fl)=l~(O~)it([J ) (6.3) 

To  show that (6.3) holds for any ~, f l > 0 ,  notice that  F is at most  a coun- 
table set. Take sequences =,, .." ~ and fl,, .7 fl such that e,,, ft , ,  ~,, + fl,, r F and 
(6.3) holds for all ~,,, fl,,. Since p( .  ) is left continuous,  we obtain that  

p ( c ( + f l ) =  lim l t ( s , + / ? , , ) =  lim p(o~,,)p(fl,,)=lt(oOp(fl) 
i i  - - ,  - j -  i t  ~ ,7_ 

So p(~) = Ce .... . That  p ( 0 ) =  1 and ~'~-~ ep(d~) -- 1 implies p(~) = e  -~. 
Finally, by the uniqueness of  the weak limit of  {pJ"(. )}, T2/E~T 2 con- 

verges in law to the exponential  distribution with mean 1. | 

Proof of Corollary 3. We have 

lim log T2 _ lim I~ / lim I~  | 
a ~ o - - l o g 5  ,~-o - l o g d  a~o - l o g 5  

Remark on (1.3). We claim that  (1.3) holds if ( �9 S\(B'-(O) w B2(1 )). 
By the Chebyshev inequality and Theorem 1, 

lira Pr ( log T L ) 
a-o \ _ l o g d < 2 + e  = 1  if ~ e S 2  

To  obtain the other  half, let A2=  {all level 2 at t ractors  and 0, 1}. If 
~eS\(B2(O)wB2(I)), then P:(d,~A_,=0 or 1)--*0 by (2.6), and T ~=  
a(A2) + T' ,  where T'  is the first exit time of K~ by {~,} starting at d,~a. ~. 
Let (~ = ~,,A,, and K3 = B2(~)kU {B'-(O)[Or 0cA2} .  Then 

E'~ r( K~ ) 9 E'~ z'( K 3 ) 
lira " " = -, lim - -  - 1 for any d, q ff K 3 

'~r(K~) ,~ - . .  - log 5 a - o E , t  . 
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It is similar to prove that r(K3)/E'~(K3) converges in law to the exponential 
distribution with mean 1. Since ( ~  K 3 c Kt,  T ' />  z(K3) and 

lim log T'  >. lim log z(K3) 
,~ ~ o - log 6 ~ ,~ ~ o -- log 6 

= lim l~ + lim E~(K3) = 2 
,~ - o - l o g  6 ,~ - o - -  l o g  6 

Thus we have shown that (1.3) holds if ~. ~ S\(B2(O)u B2(1)). By the same 
argument we prove that 

l i m P (  logT ,  1 ~ < e ) = l  if (~(B2(O)L)B2(I))\(Bt(O)wB'(1)) 
,~ - o -- log 6 

Remark on (1.4). A similar (and simpler) discussion can be carried 
out if the torus {1 ,2 ,3  ..... N } x { 1 , 2 , 3  ..... N} is replaced by the circle 
I 1, 2, 3 ..... N}. In the one-dimensional case, configuration ~ is an attractor 
if and only if 

I ~ ( x -  1 ) - ( ( x ) l  + I~(x+  1 ) - ~ ( x ) l  ~< 1 for x = l , 2  ..... N 

Except for ( =  0 or 1, ~ (~), q holds for every pair of attractors (~:, r/). It is 
easy to find a sequence {(o , ( t  ..... (,,} leading 0 to an attractor that 
Y?' I C((~, (~+ t )=2 .  These facts together imply (1.4). Comparing the two- i = 0 

dimensional torus with the one-dimensional circle, one can also sense the 
complexity in dealing with the higher dimensional case. We conjecture that 
lim,~_o(ET2)/(-log 6 ) =  N 2 in the three-dimensional case. 

t 
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